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Abstract 1- " / L/L

'-This paper is the second in a series of three that analyze a method of

dimensional reduction. It contains some results for approximation of functions

on the interval [-1,11 with elements from the nullspace of P , N > 1 , where

P is a second order ordinary differential operator. A special case of this is

approximation by polynomials.

The one-dimensional results are used as a tool to prove similar versions in

several dimensions. These multi-dimensional results are directly related to the

approximate method of dimensional reduction that was introduced in [131, and they

lead to statements about the convergence properties of this approach.

The third paper, which analyzes the adaptive aspects of the method, is

forthcoming.

1.



1. Introduction

In a recent paper, [13], we introduced the concept of dimensionally reduced

solutions to an elliptic boundary value problem. These are obtained by projecting

(in the energy) the true solution of the boundary value problem in the n+l-dimen-

sional domain w x [-h,h] onto spaces of the form

N
VN W (y/h)lw arbitrary}

J=0

where is a given set of functions on [-1,1], (x are coordinates on w

and y ranges over [-h,h]). For some basic ideas behind this concept, see the

introduction to [13]. In that paper the focus was on the right selection of the

sj's. It was shown there that for a very wide class of problems the s should

be selected such that

- 2k-1 N-k-)
span{0 12j.0  N(P

where P is a second order differential operator intrinsic to the elliptic boundary

value problem.

The estimates of the error given in [131 were asymptotic in h - 0. The present

paper, which was already announced there, treats convergence as N for a fixed

value of h . For convenience the fixed value of h is set equal to 1.

If the bilinear form associated with the elliptic boundary value problem

satisfies some kind of "inf-sup" condition, then it is well known that the rate

of convergence is the same as the rate of approximation (cf.fl]).

The results proven here are hence formulated as approximation-theoretic

estimates, and as such have interest regardless of the concept of dimensionally

reduced solutions.
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The results are all concerning approximation in the L - and H -norms,

i.e. ideally suited for second order problems. This is not crucial and similar

* results can also be obtained, e.g., for the norms (flj [11u I2dy + flIJA 1/2u 112dy)1/2
S-1 -1 I1
introduced in [13]. (A here denotes a strictly positive definite (unbounded)

operator in a Hilbert space H , and u is a function with values in H .)

For reasons of convenience the approximation results are formulated without

any boundary conditions. Various types of fixed boundary conditions can immediate-

ly be included based on the present proofs.

Estimates of the error introduced by dimensional reduction, as N goes to ,

do exist in the literature (cf. [5,7]). The problems considered in those two

papers come from structural mechanics. The elliptic operators have constant

coefficients, i.e. the *j's are polynomials. The results are not nearly as

strong as the ones established here. In [7] the estimates are based on the degree

of regularity in Ck-spaces; this is not very well suited to the regularity pro-

perties of solutions to elliptic boundary value problems, and therefore gives

crude estimates. The estimates in [5] are based on bounding the remainder in the

N-th order Taylor expansion. The estimates are very crude and do not give any

indication of the rate of approximation.

We now give a short review of the contents of this paper. In section 2 it

is shown that the set U N(Pk )  (N denotes the nullspace) is dense in H fork-i
d dany second order operator P - b 3- a;- , where both a and b are bounded from

above and away from 0 . This is the obvious generalization of the fact that the

polynomials are dense in H 1 , and it also justifies the claim that the dimensionally

reduced solutions introduced in [13] will get arbitrarily close to the true solu-

tion. In section 3 the rate of approximation using functions in N(PN), N > 1 ,

is linked to the regularity of u in spaces of the type V(Pm) . This general

result though is not always optimal, as shown, e.g., by Theorem 4.1. Section 4
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is devoted to giving a necessary and sufficient condition for a certain rate of

approximation by polynomials (i.e., the case where the operator P is a constant-

coefficient operator). In section 5 this is carried over to results in several

dimensions -- directly relating to the concept of dimensional reduction. The exam-

pie treated in section 6 is of the same type as the numerical examples in [131.

Finally the appendix contains the proofs of several results about the eigenvalues

and eigenfunctions for two-point boundary value problems, as used in sections 2

and 3.

Note: Unless otherwise stated, all constants denoted by capital letters

are generic.
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2. A Density Result

Let a and b be two functions in L ([-1,1) such that constants

a ,b with

1 0

0 < b < b(y)
0

0 <b < b(y)
0 -

By P we denote the differential operator
.1

d d
dya dy

P is considered as a mapping L 2([-l,1) m D(P) - L 2([-1,]) N(P ) denotes

kthe null-space of the operator P for any integer k > 1 . It is easily seen

k 1that N(P ) C H ([-1,1]) The first theorem in this section proves the density

of a certain class of functions associated with the operator P

Theorem 2.1

00 k 1*U N(P ) is dense in H ([-I,l)
kwl

Proof Y

By a change of variables, y' ds , and multiplication by -1 the
-i

operator P transforms into

d ad
dy' b dy'

We can therefore for the proof of this theorem assume that P is given by

- d- a(y) where a satisfies: a a constant a with 0< a < a(y)
dy dy 00

Define the operator Q by

D(Q) - D(P)nH 1([-1,1)) and Q - P on 0(Q) Let f0 denote the function
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fo(Y) JjI a )ds N(P)

-1

and define the sequence {fi by
i i-o

-i i+l

f, Q f0 4EN(P

0 < X -< X < .< X m< X denotes the eigenvalues of Q (repeated

according to multiplicity). Let {um}_7=0 be an orthonormal basis of eigenfunctions,u um corresponding to X m .  fo0 can then be expanded as

u oresonin t X*f 0  ca= hnb xadda

and with this notation

fi =  c=0aXmm
CiO

We now proceed to prove that any eigenfunction un can be approximated from
km

within u N(P k The proof is by induction in m , and we start with m - 0
k-l

For any i > 1 we have that

lUo -1 i <

CIIQ 1/2(u - X i f ) 112  -

0 1 L-2

K2 cA 0J 2i 1 < C( X / 221
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where we have used Lemma A.3 to guarantee that a 00 Since a2 <
0J-1j

and, by Lemma A.1, X0I0A1 < 1 this shows that

-1 i0X f " u0  as i " ,in H ([-1,1])

or u 0 4 N(P k)

k-l

denotes the closure in H1

Now assume it has been proven for some m > 1 that

{u}Im=1 C i N(Pk)

From Lemma A.3 we know that a # 0 , and hence for any i > 1

m m m i m,i M+ a

where x. (a- (x1 kj 1a/m) (m/, j iuj 5 kUl N(pk

due to the induction hypothesis. As before the H - norm of the sum

j i +a)XMA in u

can be estimated by

)i-i1/2 2 1/2

Because of the facts that a)~ and, by Lemma A.1, X~/r~~ A <

j sh+o 
that

this shows that
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x + aX f -u as i- o
m, i m m i um

in H ([-1,11) , i.e.

m
{u }O C UN(Pk)

k-l

This finishes the induction proof, and we conclude that

S k
{u} 0 UN(P)

k=l

From the definition of Q it immediately follows that

D(Q / 2 ) - ([-ii )

and since {u) } ' is complete in D(Q this proves that

01_ C N(pk)
Q (-1,1]) U (

k= 1

Now if uEH1([-1,1]) we shall, by choosing c = u(-l) and d =

11
(u(l)-u(-l))/f a- (s)ds , obtain that

-1

ol

u - c - df 0 C H ([-1,1])

Since 1, f0  N(P) we see by a combination of this and the previously

proven inclusion that

H ([-1,1]) = U N(Pk)

k=l El
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Based on Theorem 2.1 we can easily prove a result concerning the dimensionally

reduced solutions as introduced in [13]. This result guarantees the fulfilment

of the goal stating that the dimensionally reduced solutions shall be able to get

arbitrarily close to the true solution.

Let w denote a domain in IRn with a Lipschitz boundary.

Theorem 2.2

The set

fk

I v (x)q.(y)lJ4EN~vjE CHi(w) and q U N(Pk) for 0 < j }
J=O J k-- 1

* is dense in HI (U x [-1,1])

Proof

Follows immediately from Theorem 2.1 and the fact that

{jvj( x)wj(y) JEIN,v4EH 1) and w. EH UQ-1,1]) for 0 < j <J 

is dense in H1 (W x [-1,1])

LI]
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3. Estimates of the Rate of Approximation

In the previous section we proved the density of a certain class of functions

associated with the operator P = b a -q- . In this section we shall prove

some results concerning the rate of approximation. The first theorem is the

following.

Theorem 3.1

Assume that a,bEC ([-1,1]) , and let m be an integer > 0 . For any

e > 0 there exists a constant C such that

-ME

inf Ilu-vl L2 C C Hull VN >1
v 4 N L D(Pm)

Note. 11II(Pm) denotes the norm llP m(.)ll + 1111

One can of course combine the statement in Theorem 3.1 with interpolation by the

K-method (cf. [4]). This way it follows, that if u(L 2;D(Pm))s,. for some

0 < s < 1 , then for any e > 0

inf )1u-vj 2 < CE N-ms+ I lull 2v 4E N (PN )  L -- (L2, D(Pm))sO*

The smoothness requirement that a,bEC2([-l,l]) is not necessary; as it

immediately will follow from this proof we only need that a/b is a C 2 function.

This last remark applies to all of the results in this section.

In order to prove Theorem 3.1 we need an auxiliary result concerning uniform

approximation by polynomials. This result can be found, e.g., in chapter 6 of (6].
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Lemma 3.1

Let 0 be a function in C ([c,d]). Define by $(t) = ( Cost +-c )
2-

t E[Cr].

Let r be a non-negative integer. There exists a constant C such that forr

any * with I ECr([OW]) the following estimate holds

infl-PNIO< Cr (N+l)-rlIr VN > 0
PN

The infinum here is taken over all polynomials PN of degree < N 1-10

?0 r
and I'Ir denote the norms in C ([c,d]) and C ([o,w]) respectively.

We now continue with

Proof of Theorem 3.1

Like in the proof of Theorem 2.1 we may also here assume that P is given by

p =_-da(y) d
d=a . Let f i > 0 be defined as in that same proof. For any set

of coefficients {c IN we have, using Lemma A.3, that
i i=0

N O N
u- a afi = X- u -

f= j 30 ij

where J 1 ju is the expansion corresponding to u If by PN we denote the
j=o N

polynomial PN(x) = 0 cix , then the above can be rewritten asi=O

N
u- cifi= J10 t(aj/c- PN(A'))uj ,

and this leads to the equality

N
(T IIu - I cifilI 22 2ci (a /Cj - PN (jI))

2

imo L j= -0i



11

As in the proof of Theorem 2.1 Q denotes the restriction of P to

01 k
V(P) nH ([-1,11) . Let us now for a while assume that uED(Q)

Choose A so that {XI}- = 0 W [O,A] . Define a sequence of functionsj J-0
*MEC([OA]) , 1 < M, with the following properties

- a 0 < < -1

*M(X) = 0 on [0,M I

Let 0 denote the mapping

A

0(t) A (1-cost): [0,r] + [0,A]

it then follows from Lemma A.1 and Lemma A.2 that

-x - 1-1I > C/j 2 for any j > .

This estimate tells us that it is possible to construct the 0M's such that

VM, j > 1

< C sup I(J+l)2r /I[,M(,(tl)m 1r-Cro <M-1

Now since uED(Qk) we know that 1641 < Ck(j+l)- 2k QkuL 2 and combining

this with Lemma A.4 we get

- 1%/aI < Ck(i+l) 2 k+l2 QkUIL2
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i.e., we have for any r > k and M > 1

S.%M(O(t)) Ir i CrM2(r-k)+1 1 jQkul L 2

Because of Lemma 3.1 we can now, for any r > k , M > 1 , find a polynomial

N of degree < N such that

IM-PNI0 < Cr (N+l)-rM2(r-k)+lI lQkull 2

We now go back to estimate the right hand side of (1)

M-1I0
a2 /a < M 2 a ((*M-PN) (A- + 2 2

j=O0- j 0 j=M 3

+ 2 2 ( M- 1 ) 2

j=M N j

The first and the third sum can be estimated by

C (N+l)-2rM4 (r-k)+2  a 2 IlQkuI2 .--

r L

< r (N+l)-2rM4 (r-k)+2 iQku 12-- L

the second by

Sk - (J+l)-4kl IQkull 22 < CkMI-4k+l IQku1I 22i-H L L

LA
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In summary we have therefore proven

IIu - I cifill 22 Cr((Nl)-2rM4 (r-k)+2 + M-4k+l)IlQkul,2

i=O L L

for any r > k , N > 0 and M > 1 . Taking M = [N] + 1 ([1 denotes the

integer part) this estimate gives

N 2
(2) Ilu - o c ifj Il2< Ck(N+l)-2k+l,,QkuiL 2

k- 2 C 2

all provided that uOED(Qk) Let IN denote the L -projection onto linear

combinations of the functions f0"""' fN

(2) expresses that

I IU-Nll L2 :< Ck(N+l) -k+1/2 1 1QkUiiL 2

at the same time it is clear that

I lU-gNUll 2 < 1 hulL 2
LL

Applying interpolation by the K-method we get for any 0 < m < k

1I - uL2 _ Ck(N+I) I IQmul 2

luHu L 2 kL2

Now let m be fixed and k - , from the previous inequality we then get

VCE > 0 3Cc such that
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(3) I lu-RNu1 L2 < C (N+l)-m l IQLmu 2

mmprovided uof D(Qm ) .If we only know that uOED(P m )  then choose {f m~C

JN(Pm ) such that

p 1J 1  i -l u for y=+l1
i

e Pg1  = u for y =+l1

I 'IPij 9 0 for y = +

and any i # J-I (this is obviously possible). This way

m

u - I g1 EV(Q m) and
J=l

(4)

Sg E N(Pm )

From (3) and (4) it now follows that

m m< 
N 1 - c

Hlu-I (U- Tg)- I g I<C(N+)i- =i 1= =i L

fQ m (u - J gj)IIL2 - C;(N+l) m+CIIIL 2
]=+1

Since the image under R N is contained in N(PN ) , this estimate yields the

desired result for N > m . There are only a finite number of N's < m , and

hence the result can be obtained for all N by possibly increasing C.
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Based on Theorem 3.1 we can prove the following result concerning approximation in

the H -norm.

Theorem 3.2

2
Assume that a,bEC (-1,1]) , and let m be an integer > 1 . For any

e > 0 there exists a constant C such that

inf lu-vl l  < (C N-m l+e Hull VN > 1
N H V(Pm)

vCN(P)

Proof

NFrom Theorem 3.1 it follows that there exist vNEN(P ) such that
4 N

IIPU-NII 2 . C N- m + l+ p Hll

Now choose VEN(P with PvNvN ,and such that v u for y-+i

It then follows that

_ - " <._ N-M+I+  llul
HU-VNi !HI , C!iPu-PNI L 2  CllPU-v N L2 <HC N D(P m

We can also easily prove a result relating to the dimensionally reduced solu-

tions as introduced in [13]. Let wCIRn be a domain with a Lipschitz boundary.

x- (xl,...,xn) denotes coordinates in w and y ranges over [-1,1]. P denotes

b(y) -T a(y) _L considered as an operator 2(wx [-l,l]_V( ) - ( L(w x [-i,11)'y as an opeato (W)
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Theorem 3.3

Assume that abEC 2([-1,1]) and let m be an integer > 1 . Let u be

2 a aan element of L (w x [-i,]) with - u..P x- u , UV(m) . Then for any
TX"1 n

e > 0 there exist C (independent of u ) such that

£n

inf Iiu-Jl 1< C (N+l)-m+l+( l ui1 )+ IIU (l)
vEVN H (( x [-1]) - )

1 ,2k-1

Here VN denotes the set I w(x)O (y)lw CHl(1), where klj=0  is a basisJ-0

for N(Pk) C HI([-Il)•

Proof
N2

Let vN denote the orthogonal projection of 'u onto f Z wj(x)j(y)IwjCL2()}
J.0
avN

in the L 2(W x [-1,]) inner product. Then it is clear that - is the L2

in he w xax i
projection of au onto the same subspace. From Theorem 3.1 we immediately getaxe

SI1I- i-(u-v*)IL2 + I (U-v*)IlIi P xF L2( [-ill]) N ,L2 (W [-i,i])

< L(~)-+l+e(N (2I -ulV )+ IIV(1)

for any function v*EVN+3 with PvN - vN  (if N is odd such a v* will be

contained in VN+2 , but this is not necessarily so for N even). Now choosing

N so that also v*= u for y + 1 (this is obviously possible), it follows

that

-JA LA
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N- Li (w x [ilay N L 2(w x[-,)

4+ 1Iu-v~lI
NL 2(w x -1)

c *1

C(N+)fl~l I ( I ~uI I ftm + Hull )
imi ax V (P ) DV(P m

.11l
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4. The Constant Coefficient Case - 1 Dimensional Results

The following two sections are devoted to the case where the operator P

has constant coefficients. In the previous section we estimated the rate of

approximation for general P's , but the estimates established there do not have

exact inverse counterparts nor are they always optimal. As will be shown in this

section and the next, the question of approximation rate can be much further

clarified when P is a constant coefficient operator. We start with an analysis

kof the 1 dimensional problem. The space N(P ) , k > 1 , consists simply of all

polynomials of degree < 2k-1 . Theorem 3.1 combined with interpolation says

that if uEH t([-1,1]) , then there exist polynomials pN , of degree N , such

that I IU-PNI IL2 C (N+1)-t/2+  . Under the present simplified circumstances
tht4Up1 L 2 £C

we can prove a better result. In the formulation of this result we use the Besov

t tspaces B t > 0 , (cf. [4]) , instead of the ordinary Sobolev spaces H
2 ,0

For an interpretation in terms of the spaces Ht use the inclusions Ht CB C _

Ht-E valid for any t > 0 , E > 0.

Theorem 4.1

Let t be a given positive number. There exists a constant Ct such that

for any uEB ,'([-1,1]) one can find a sequence of polynomials {p } 0 , the
2 ,~N N0

degree of pN < N , with

IIu-PNIIL2 S Ct(N+l)-tllul
L B 2,oD

Note. A similar theorem is also valid for the H -norm. The estimate here

becomes (for t > 1)

IlU-PNII <Ct(N+l)- t+l ull
H B2 ,
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The rate of approximation established in Theorem 4.1 is optimal in the

following sense.

Theorem 4.2

2
If uEL (-1,1]) and there exist a constant C and a sequence of poly-

nomials {p}0 , the degree of PN < N , such that
N N_-

.A

IlU-pNIL2 < C(N+1) for some t > 0

then uE(Bt n) t/2
2 )loc 2,•

Not__e. Theorem 4.2 is not an exact inverse of Theorem 4.1 since it only

guarantees that 24 (1-1,1]) . But based on Theorem 4.2 we conclude that
for~ ~~~~~2 aaeeamtp ucto nB

for a general type function in B"2 ,([-,1]) we cannot expect more than an approxi-

mation rate of (N+1)-
t

Theorem 4.2 is optimal in that one can find u such that lIu-P.14  < CC(N+l)

kBt/2+c .t+.
and u? 2,ao u (B2 ,W)loc for any e > 0 (cf. [121)

The proof of Theorem 4.1 is very simple, based on transforming u into a

periodic function and estimating the remainder of the k'th order Fourier expansion.

Details can be found, e.g., in [2].

The proof of Theorem 4.2 is not quite as simple. The cornerstone is the

so-called Bernsteins inequality

d )pN < cN21 Ip Il

dy NiL 2< C N 2

valid for any polynomial of degree < N . For more details see [2] or [10].

As already noted Theorem 4.2, although optimal, is not an exact inverse of

Theorem 4.1. This can be taken as evidence that the standard Sobolev or Besov

spaces are not very good for expressing the kind of regularity needed for a

6L... A ...
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certain rate of approximation by polynomials. They do not take into account the

well known fact, already noted by Timan (cf. [9]), that the polynomials have a

certain ability to absorb singularities at the end points of an interval.

Let L denote the operator -d (l-y2) - with domain of definition

D(L) = {uEL2 ([-1,11) I LuEL 2 (-I,1I)}

Now introduce the Besov spaces Ht, t > 0 , by

H=(D(Up ) ;  S Poo

where p,q are two integers with 0 < p < t < q and 0 < s < 1 is selected so

that p(l-s) + qs = t . Because of Theorem 14.1 in [8], which says that

(M(Lk);D(L t)) D(Lk (l-8)+t) , and the reiteration theorem on p.50 of (4]6,2
tit follows that modulo equivalent norms H is independent of the choice of p

and q.

We are now in a position to characterize completely the regularity needed

for a certain order of approximation by polynomials.

Theorem 4.3

Let t be a positive number. For any uEHt we can find a sequence of

polynomials {pN}N-0 , the degree of pN < N , such that

IIu-pNII 2 < (N+l)-2t1 lull t
L Hi

On the other hand if uSL2([-1,1]) and there exists a constant C and a

sequence of polynomials {p N}N0 , the degree of p < N , such that

N-- --N -O
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I 1'U-PN1 L2 < Cu(N+I-)-2t

then uEHt and

Hull _ < C(C+liH 2)
If L

for some constant C independent of u

Note. C here is not generic, it is the same constant in the two inequalities.

Proof

We start by proving the direct part. It is well known that the eigenfunctions

of L are the Legendre polynomials {k}k0 " Also

L(Zk) =k(k+l)Zk

Let now u be an element of D(Lp ) and let a M I be the Legendre series
m'O m m

for u . Since uCD(Lp) we know that i a2m'm4p < 1 lu1 2  DefineN m-0 DUP)(L )

I a Z, then
m-0

M IUpN a = .2 < (N+I)- 4p  go 012 m 4p < (N+I)-4P lul 12

i.e., Iu-PN1L2 -< S (N+l)- 2p (ull up)

Interpolation applied to this gives the desired result.

We now turn to the inverse. Assume that there exists polynomials PN of

degree < N such that
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HUPN' L2 <C u(N+1) -2 t

Define )t i ' 121 m in-1i i> I
2

Then

11,1011 2~Cu + hlull L2 and

11411 L < ii-p 2 il + H1 1 P 1 1 1L2<tc 2-2tm m>

Since IlL n11L 2 :S Cnl lPnIl L 2  for any polynomial Pn of degree < n ,it follows

from above that for any non-negative integpr q

< ( and

kk

Now ein L %m-Wete e

kk

<C qt(C u+ H ull 2 + C 2 
2(q-t)mI

- qt UL in-1

< C q 2 
2 (-t)k (C + Hlull L2)

provided q > t At the same time
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I Uv~ k1L 2  lu-Pki U 2 <C 2- tI Lu- .= 2 L C

By defining sk 2- 2kq we therefore have

t

kl + SkVkll. q  Cq,t(Cu + 11UL2)

'I and since s k -~0 for k -~~this proves that
I

E(L ;D(Lq)) t  = Ht
ut

with

Hull < C (C + Hul l2
H t q,t u L2

This theorem also allows a version formulated by using the spaces D(Lt)

instead of the corresponding Besov spaces. It is derived from the inclusions

DUt ) Ht CV(Lt-C) valid for any t > 0 , e > 0.

A theorem similar to Theorem 4.3 but concerning approximation in the H

norm can be derived immediately based on Theorem 4.3.

For practical purposes, in determining the rate of approximation, the

following characterization of D(Lq ) (cf. [31) will often be convenient:

D(L q ) - {uEL2([-il])uCH q([-,I]) , (l-y2)quEH2q([_l,l])}
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Let us now give one simple example that shows how a result similar to

Theorem 4.3 can be established also in a case with non-constant coefficient.

Example 4.1

Let P denote the operator a -dy a y where the function a is

given by

a(y) = a+ for y > 0

a. for y < 0

with a+ and a: being two positive constants. (This is the operator arising

in the numerical examples of [13].)

It is not difficult to see that the following set of functions is a basis

for N(P :

0o =  1 --a y
1, y

*2k -- Z2k-i.(t)dt ' f2k+l - aty) f Z2k(t)dt 1 < k < N-1

-1 -1

Here tk denotes the Legendre polynomial or order k . Performing the

Gram-Schmidt orthogonalization on the set 00, i'" ... '2N-2'02N-I (in that

sequence), in the inner-product <uv>a u(y)v(y)a(y)dy , we end up with

a new set of functions 0, 1' '.2N-2' 2N-l * k is a piecewise polynomial

of degree k . Let La denote the operator -a-1(y) - a(y)(l-y2) d , it is

then clear that

L4 2k= Ajk 0 < k < N-I
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k
L a*2k-1 l k 2J- 1 _k <_ N

Now we have because of the orthogonality of the k's and the fact that

La is self-adjoint in L 2([-l,l],a(y)dy)

<La kOj a = <ik, La > = 0 for j < k
ak'P ja =<k aja

i.e., La k =A kOk for any k

It immediately follows that X = k(k+l)
k W 2

It also follows, since {ik 1.0isdense in L([-1,1]) , that {XkPk}
4k k-0 k' k k=O

is a complete set of eigenvalues and eigenfunctions for La

As in the proof of Theorem 4.3 we now get that

inf I Iu-vI I2 < CN- 2t

vEN (P)

a a s,oo

for any 0 < p < t < q ,and 0 < s < 1 chosen such that t =p(l-s) + qs

In summary, we have found a singular operator La that characterizes the rate

of approximation with functions in N(PN ) the same way that the Legendre

operator does with polynomials.
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5. The Constant Coefficient Case - Dimensions Higher Than 1

In this section we prove a result relating to the dimensionally reduced

solutions introduced in [13]. We give a characterization of the regularity

needed for a certain rate of approximation. The approximating functions are
N 1

of the form I wj(x)pj(y) where wj4EH (w) and pj is a polynomial of
J=0

degree j , i.e., the operator P has constant coefficients. w as before

ndenotes a domain in IR with a Lipschitz boundary and y ranges over [-1,11.

In the proof of the main result in this section the following lemma will

be very useful.

Lemma 5.1

Let H,_CH 0 be two Banach spaces with norms fI'I and respec-

tively.

Let {VN=0 be an increasing sequence of subspaces of H and let a be

a positive number. We assume that the following implication holds

uEH0  and inf J u-qllo < Cu(N+l)- , V > 0
q ON

u 1EH and Hull11.C(Cu + iHuilo)

for some C independent of u. (Cu here is not generic, it is the same con-

stant in the two inequalities.)

As a result of this it follows that for any 0 < e < 1

uEH0  and inf I lu-ql <0 . Cu(N+l)- VN > 0

N,

u 4E(O;Hl) eGo and IHuNle,. _ C(Cu + ltul 0)
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for some C independent of u (As before C is not generic.)U

Proof

Let 0 < e < 1 and assume that there exists a sequence of elements

qNEV N' N > 0 ,such that

I Iu-qN Io < Cu(N+l)

7,+:
Define

1 

1

m - q m-1 m >
2 2

then k lu-1-O 1-,, 0 = lu-qklo < C 2-k e8

Il 1- 10- u

At the same time

IIOI10 < Cu + I Iu I10  and

I lJ 1 < I ju-q 110 + Jlu-q I < Co 8Cu 2 , m > 1

That is, 4EV m > 1 , and.j 2m -

12m ( )-mI 1 o ! CO (Cu + lul jo)2-m •

From the first implication in the statement of this theorem it follows that

112ma( 0-1) ml I1, < Ce8 (c, + I lul lo + 112me(e-1) m110)
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or I I4O I <- Ce(C + I lul I0)'2 (1-e)
mU

We therefore get

k k
H % 1I1 -I o II%1I 11 < c e , (Cu +'llul Io)' 2k8(l-e)

* If we define sk = 2-kB the following inequality now holds

_e k k
" s(Ilu -  1 % 10 + Skl I X m11) < ce B(Cu + I lulo)

T-=0 m=O -

Since sk - 0 for k this proves that

u4E(H ;HI) , with

I lul le, . ce, (Cu  + I lullo)

Let us introduce the spaces

KR - {uED(LR) Ix i .uD(LR) i =

L here denotes - (-y 2 ) -y considered as an operator L2 ( x

D(L)+ L2 ( w x [-1,1) , and R is a non-negative integer.N

V denotes the space w(x)p(ylwEH()} where pj is a poly-

nomial of degree J , j > 0 . We are then able to give the following character-

ization of approximation by the spaces VN in the H -norm.
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Theorem 5.1

Let a be a given positive number. If uE(H(1  x [-1,1]);KR for~a/R,oo
some integer R > a and R > 2W/e , where e is a positive number, then there

exists a constant C such that

inf Iu-qjl 1 < C O+l) -  , VN > 0
q 4EV N  H (Wx [-1,11)

On the other hand if for some c > 0 there exist a constant C such that

2a-inf ju-qH] < c(N+1) -  , _VN > 0
q EV N  H (wx [-I,1)-

then

uE n (H1 (w x [-1,1]);KR)a/R,-
REIN ,R>a

Before we proceed with the proof of Theorem 5.1, let us state a corollary

that immediately follows from this theorem.

Modulo c this is the equivalent of Theorem 4.3 in more than one dimen-

sion.

.Corollary 5.1.

Let a be a given positive integer. If uE C n (H (w x [-II]);KRa/R,-'

REIN ,R>a

then for any e > 0 there exist a constant C such that
S

inf jju-qll < C (N+l) , N > 0
qEVN  H (W x [-1,1])

On the other hand if for some E > 0 there exists a constant C such that
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inf Ilu-ql Il, 1-1,11) <- C(N+l)-2c-e VN > 0

then

ue n (H (W x [-1,11);K)
RE'IN, R> a

Proof of Theorem 5.1

R
Assume that uEK and R is an integer > 1 . Let v denote the

N N
xjorthogonal projection of Lu onto { J wJ(x)pj(y)Iwj-EL2 N) in the L(

J--0 a2
[-i,1]) inner product. Then it is clear that vN  is the L projection

of L u onto the same subspace. From Theorem 4.3 we immediately get

n '

L -vj)y 2 IIL(u-vNJ)lL 2i L (W x [-1,1]) L(

-CR Nl (( l D(LR)

% 1
for any function vN 4VN with Lv = VN Now choosing v* so that also f v(x,y)dy

=f u(x,y)dy for any xEw (this is obviously possible) it follows that
-1

nn

I II (- II2 + I lu-v~II L2 + II(- lt(

( JI , (uv,) 2 + I L(u-v)Il 2

N L (Wx [-l,1]) L (W

N i 1I I'-i UI I \R + I I U I I R) " cR '2-2I luKR
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Using interpolation on this result we get that

2a

inf Iu-qi ( < RCR N-2 + R I IuII a /R ' -
q*VN  x[11)

where I ilui l/R,- denotes the norm on (H (W x t-I,l;K Ra/R, . Since

e2/c <R , i.e. 2a/R < e , the direct part of this theorem immediately follows.

Let us now give a proof of the second part of the theorem. If

-2R-
iVN H1 [Wx-1,1]) <CN - for some R > , then as in
qEV N ( [ - i]

the proof of Theorem 4.3 it easily follows that

uED(LR) and -- uED(LR)
axi

RR1i.e. uEK R . If we apply Lemma 5.1 with H = KR  H 0  H (w x [-1,11) and

6 = a/R , we then get that

inf 1ju-q 11 < C(N+l)
qEVN H (w x [-1,1])

implies

uE(HI (w x [-1,11);KR)a/R,,

for any integer R > a, i.e.

u n (H (W x [-1,1]);KR) /R,
REM ,R>a

#I
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For the conclusion of this section let us give a simple example that shows

the practical usefulness of Theorem 5.1 (or corollary 5.1).

Example 5.1

Let w be the interval [0,1] . Let y be a positive number and let

(4,6) denote polar coordinates around the point (1,1). We then consider func-

tions of the type u = Ay4(O) , where * is an element of CO([0,7/2])

It is not difficult to prove that

uE n (H(W x [-,]);KR/R,

REIN,R>T

for 0< T < y ,and that for a general choice of * this is not so for any

T > y (if Y#IN, then this is not so for any 4 and T > y except =0). By

an application of corollary 5.1 we therefore get that

inf I Iu-qj I < c (N+I) - 2 + ,  VN > 0
q EVN  H (W x [-1,1])

for any e > 0 , and at the same time that for a general choice of * (or for

any 4 # 0 in the case y #IN) there exist no e >0 and C such that

inf 1iu-q ( < C€ (N+)-
2 - WN > 0

qeVN  H (w x [-1,11)

A function of the type &Y 4(O) is a typical example of a corner-singularity

as arising from the solution of an elliptic boundary value problem.

Theorem 5.1 (or corollary 5.1) is thus well suited to predict the optimal

order of convergence (modulo e ) that one can in general expect by dimensional

reduction of elliptic boundary value problems.
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A result like this could not have been obtained by using the a-priori

knowledge of the regularity of solutions to elliptic boundary value problems

in terms of standard Sobolev spaces.

I



34

6. A Simple Example of Dimensional Reduction

Let us consider the boundary value problem

Au 0 in ]0,lx]-1,l[

u - 0 for x =,l 9.

au
-g(x) for y-+ 1

(n is the outward normal).

From [13] it follows that the optimal choice of basis functions for dimen-

0
sional reduction in this case is the polynomials. VN denotes the set

N 01
I w (x) p.(y) wJ4E H ([0,1])} , where pj is a polynomial of degree j
j-0

0
Let u denote the projection of u onto V in the inner product

N N

f f±~dd ty is clea tha

0-1

inf Ilu - ql 2

0 H ([0,lx[-l,l)

q E VN

< C inf Hfu-q112
1

0 H (E0,l1xI-l1l])

and hence that the energy error B(u-uN, u-uN )  is asymptotically in N equivalent

1 0
to the square of the distance (in H ) from u to VN

If g has the Fourier series

1s
g(x) - g sin kir x

k-l
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then it immediately follows that u is given by

U(X,y) " 0 cosh(kwy) gk

k1i sinh(k7r) kr sin krx

In terms of regularity of u it is not difficult to prove that this formula leads

to the following three results:

Si) Va > 0: g. k < -- uEH 3 n2 (t0,lx[-,l)

k-1

kl Iwith e -c + 1/2

Re IN , R > O e G k <2 a "

with 6 a + 1/2 + c. k-

We consider two different choices for g

g(x) - w/4

g(x) - x(x-l)

For the first choice of g it follows that

i g 2k < for any 8 < 1/2 and
k- 

k

k- 2
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similarly for the second choice

9 2 k26 < = for any 6 < 5/2 , and
k-i

k=l

Corollary 5.1 together with the regularity results ii) and iii) now

ensure that

In the case g(x) = x/4

B(u-uN, u-uN) will converge to zero faster than N-+, > 0 , but

on the other hand slower than N-4-E Ve

In the case g(x) x(x-l)

B(U-UN, U-uN) will converge to zero faster than N- 2 ,  >0, but

on the other hand slower than N ,ve > 0

Figures 1 and 2 show the actual computed values of B(u-uN, u-uN) as a

function of N in the two different cases. Note that the asymptotic rate of

convergence is obtained already for a fairly small number of polynomials.

For details concerning the computation of the UN's see [13].

Instead of using Corollary 5.1 to obtain information about the rate of

convergence we could have used the regularity result i) and a 2-dimensional

version of Theorem 4.1. This way we could at most have predicted convergence

of the order of N-2+ e and N- 6+  respectively, i.e. only half the actual

convergence rate.

In [13] we considered the same boundary value problem as here, only it was

on the domain [O,lx[-h,h] for some h > 0 , and not on [0,l]x[-l,l] . From
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the computational results there it follows that for a fixed N > 2

B(u-uh , u-u h) behaves like h2 , h + 0 , in the case where g(x) n/4
h 9 N N o

u( is the projection of u onto {I W W P(y/h) I w E H o011}
J=0

Comparing this to the result obtained here for g(x) = r/4 it is seen that using

N polynomials, yESC-l,l], is in some sense equivalent to having a domain of

2thickness 1I/N . A similar feature has been noticed by comparison of the

standard h-version of the F.E.M. with the so-called p-version (cf. [2]).

In this example we used slight variations of the approximation results

proved in sections 4 and 5, namely with fixed boundary conditions E 0 at

x - 0,1 . The proofs of these results follow immediately from the proofs of

the similar results with no boundary conditions.

i-Ii

*1 1
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Appendix

In sections 2 and 3, we used some results concerning the eigenvalues and

eigenfunctions of the boundary value problem

d d
- a - u i Xu
dy dy

u(-l) = uMi) = 0

a here is a function in Lw([-,lJ) such that a constant a with

0 < a < a(y) From the theory of Sturm-Liouville systems it immediately
0-

follows that the eigenvalues (repeated according to multiplicity) form a sequence:

0 o- - -X m X m+l"

with + as the only limit point.

Lemma A.1

With notation as above

xm 0 Xml for m 0 m'

i.e. the eigenvalues are all simple.

Proof

Assume that for some m 0 m' A - X , . This means that the eigenvalue

X - Am ( A m,) has multiplicity > 1 . Let u and u be two linearly independent

eigenvectors corresponding to X , and let v - cu + du be a nontrivial linear
dv

combination with the property that a T -0 for y - -l (such one obviously
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exists). The function v is then a solution to the initial-value problem

d d v - Xv in [-1,1]

v -adv- 0 for y-i
dy

and because of the uniqueness of solutions to this problem, it follows that

v M 0 . Since v is a nontrivial linear combination of u and u this shows

that u and u are linearly dependent. We therefore have arrived at a contra-

diction, i.e., Xm 0 X , for m # m'

El

It is well known that there exist constants 0 < C1  and 0 < C2  such that

C1 (m+l)2 < X < C2(m+l)

By imposing an extra smoothness requirement on a we can obtain a much more

detailed statement.

Lemma A.2

If a C C2 (C-1,]) , then

2 2X , (w/rt) (m+l) + 0(1)m 1

r -1/2
where Z - J (a(y)) dy

-1

A proof of Lemma A.2 is found in chapter 4 of [113, and shall not be

repeated here.

Let {u } denote a sequence of normalized eigenfunctions, u corres-
m min0 m

ponding to Xm • Let f0  be given as in section 2, namely

f (y) " i-) ds
-1
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Lemma A.3

The function f0  has the expansion

f0 ccn u

where a # 0 for every m

Proof

That f0 has a unique expansion is wellknown. The coefficient a ism

given by

11
am  *) J )ds ur(y) dy

-1 -l

Now assume that for some value of m - m a - 0 ,i.e.0 m
0

1 u (y)dy - 0f a (s) m 0m

011
1 d dSince - -ya-U we get that

o m0
0

J i (8 d ud 1(y) dy-fi0

-1-1

Performing an integration by parts this yields

1
1 1

- (--L- ds a - u] (1) - u (y) dy 0 ,
-1 a(s) d - y dy 0o -1 o
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I and the last integral here vanishes due to the fact that u (1) - u (-1) - 0
0 0

We therefore conclude that

da-u urn 0 for yi= 1

0 0

On the other hand urn satisfies the differential equation
0

d d
- u +A u =0 in E-1,1]

dy dy m 0 U m0

Because of uniqueness of solutions to the initial-value problem, this implies

that u = 0 . We have thus arrived at a contradiction, meaning that a # 0
m m

0

for every m.

Again, by imposing an extra smoothness requirement on a , we obtain a

very detailed result concerning the decay-properties of the a 'sm

Lemma A.4

If aEC2 ([-1,1]), then 3 constants 0 < C1  and 0 < C2  such that

C1 2- for all m

Proof

From [11] p. 176 we get the following asymptotic formula for urn(y)

un(y) - D((a(y)) - I / 4  sin +O£ +1-

1 cos +-2
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where (y) - (a(s))-l/2ds and 2I. &(1) - (a(s))-1/2ds The function
-1 -1

T is in C1  and the constants D satisfym

3 D (independent of m ) such that

1/D < IDIm < D for all m

Also, 0(') here means uniformly in y Let us now calculate a m

1m  yd 1 as)s Um(Y)dy=1 1
- J fo(y) u Jyd - -1ds u (yd

-1 -1-1

11 + 12 + 0((m+l) -2)

12 denotes the integral

*~ y / _m i d -1/4 )co)
I D 1 - s (a(y)) T()cos (m+l)w dy

By a change of variables from y to & and an integration by parts, it

immediately follows that 12 is 0((m+l) - 2)

I1 is given as

1 y -1

Dm )f fTL ds (a(y)f 1 /4 sin ((m+)r) dy

By a change of variables from y to & and an integration by parts we

get that
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(1 - Dm  .dA Z (a(l)) 1 1-1l) + 0((r+l)-2
1 Dm a /s (m+l)w Tr ) #O(m1

This immediately implies the existence of two constants 0 < C1  and 0 < C2

such that

C C

-1

for m sufficiently large. Now combining with Lemma A.3 and possibly changing
the constants C1  and C2  we get the desired result.

1 2
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